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Abstract
We obtain analytical expressions for the total magnetic moment and the static
spin correlation functions of the classical Heisenberg model for an irregular
tetrahedron array of spins that interact via two different exchange interactions
and that are subject to a uniform magnetic field of arbitrary strength. This system
provides a useful theoretical framework for calculating the magnetic properties
of several recently synthesized molecular magnets. The tetrahedron systems,
each considered for antiferromagnetic exchange, are of particular interest since
they exhibit frustrated spin ordering for sufficiently low temperatures and weak
magnetic fields. We compare the results with the corresponding irregular
tetrahedron of quantum spins for several quantum spin values.

PACS numbers: 7510H, 7550X

1. Introduction

In recent years there has been a surge of interest in the magnetic properties of synthesized
molecular clusters [1, 2] containing relatively small numbers of paramagnetic ions. With the
ability to control the placement of magnetic moments of diverse species within stable molecular
structures, one can test basic theories of magnetism and explore the design of novel systems
that offer the prospect of useful applications [3, 4]. A common feature of these organic-
based molecular magnets is that intermolecular magnetic interactions are extremely weak
compared with those within individual molecules, i.e. a bulk sample can be described in terms
of independent individual molecular magnets.

As examples of molecular magnets with ultra-small numbers of embedded paramagnetic
ions we mention the dimer system [5] consisting of two Fe3+ ions (spin S = 5

2 ), a nearly
equilateral triangular array [6] of V4+ ions (total spin j = 7

2 ), a nearly square array [7] of
Nd3+ ions (total spin j = 9

2 ), a regular tetrahedron array [8] of Cr3+ ions (spin S = 3
2 ) and an

irregular tetrahedron array [9] of Fe3+ ions (spin S = 5
2 ). Also noteworthy is the pyrochlore

antiferromagnet Tb2Ti2O7, although distinct from the class of organic molecules yet sharing
the feature that the Tb3+ ions (total spin j = 6) reside on a network of very weakly coupled
tetrahedra [10].
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This paper has been motivated by the rapid experimental developments in the synthesis
of molecular magnets with ultra-small numbers of strongly interacting moments. It is perhaps
surprising that for high-spin moments the calculation of equilibrium magnetic properties
for arbitrary temperatures and magnetic field strengths presents a serious challenge. One
might expect that the determination of the partition function for a few-spin system would
be a relatively simple task. To put this matter in perspective, it should be recalled that for
a finite open chain of classical spins which interact with nearest-neighbour (NN) isotropic
Heisenberg exchange, the partition function has been evaluated only in the absence of an
external magnetic field [11]. For the related system, where the linear chain is closed so as
to form a ‘Heisenberg ring’, the calculation of the partition function and the equilibrium spin
correlation function is extremely involved. Exact, unwieldy infinite-series expansions of these
quantities were successfully derived [12] many years ago, but only for zero applied field. With
the introduction of an external magnetic field the analytic calculation of the partition function
has been an intractable problem even for small numbers of interacting moments1.

The purpose of this paper is to provide the full magnetic equation of state (molecular
magnetic moment) and spin correlation functions, versus temperature and applied magnetic
field, for a specific molecular magnet consisting of an irregular tetrahedron array of spins
where three spins are placed in a ring and are coupled with a given exchange interaction,
J while the fourth spin of the tetrahedron is coupled with a different exchange interaction
J ′ to the remaining three spins. The whole cluster of spins is then subjected to an external
magnetic field. In more experimental terms, we calculate quantities that are directly related to
the temperature and applied field-dependent magnetization.

This system mirrors some of the synthetic molecular magnets cited above and the results
also apply to the regular tetrahedron and regular triangle of spins, which are special cases of
this general model and are of special interest in their own right because such systems [6, 10]
exhibit frustrated order at sufficiently low temperatures and weak magnetic fields.

In section 2 we summarize several basic formulae for a general system ofN classical spins
coupled by two different exchange interactions and subjected to a magnetic field. In section 3
we describe the analogous quantum system with individual quantum spins S and make the
correspondence between the classical and quantum models. In section 4 we illustrate our
method for evaluating the partition function for the irregular tetrahedron of classical spins in
the presence of an external magnetic field. In section 5 we comment briefly on the results that
apply to the ground state configuration of the spins for an arbitrary value of the magnetic field.
In section 6 we describe the main results for the irregular tetrahedron of classical spins that
apply to any value of temperature and magnetic field and compare them with the corresponding
exact results for the irregular tetrahedron of quantum spins for increasing value of quantum
spin S. In section 7 we show the formulae that apply to a general temperature in the absence
of an external magnetic field and finally in section 8 we summarize the results and comment
briefly on the obstacles to extending the present calculations to larger arrays of spins, while
noting several larger systems that can be dealt with successfully.

2. General formulae for the classical model

For a general system consisting of N classical spins coupled by two different exchange
interaction valuesJ andJ ′ and subjected to a uniform external magnetic field �B the Hamiltonian

1 A numerical method for calculating equilibrium quantities such as the partition function and equal-time spin
correlation functions has been given in [13].
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is written as

HN(J, J
′, B) = HN(J, J ′)− µ �B ·

N∑
i=1

�Si (1)

where HN(J, J ′) is the zero-field Hamiltonian.
The direction of �B serves to define the z (polar) axis,µ (> 0) is the gyromagnetic ratio and

the spins �Si are classical unit vectors whose orientation is specified by the polar and azimuthal
angles θi and ϕi .

The partition function for an arbitrary magnetic field is given by

ZN(J, J
′, B) =

∫
· · ·

∫ N∏
i=1

d�i exp
[−βHN(J, J ′, B)

]
(2)

where d�i = dθi sin(θi) dϕi is an element of solid angle extended from 0 to π and 0 to 2π ,
respectively, β = 1/(kBT ), kB is the Boltzmann constant and T is the absolute temperature of
the system.

The total magnetic moment induced by the magnetic field is given by

〈Mz〉(B) = µ
N∑
i=1

〈Siz〉 = 1

β

∂

∂B
lnZN(J, J

′, B) (3)

and the expression for the total susceptibility χN(T , B) = ∂
∂B

〈Mz〉(B) is provided by the
fluctuation relation in the form

χN(T , B) = µ2β

N∑
i=1

N∑
j=1

[〈SizSjz〉 − 〈Siz〉〈Sjz〉
]
. (4)

In the zero-field limit we have 〈SizSjz〉 = 1
3 〈�Si · �Sj 〉 and 〈Siz〉 = 0 so the zero-field

susceptibility per spin χN(T , B = 0)/N may be written as

χN(T , B = 0)

N
= 1

3µ
2βχ̃N(T ) (5)

in terms of a reduced susceptibility χ̃N (T ) given by

χ̃N (T ) = 1 +
2

N

N∑
i>j

〈�Si · �Sj 〉. (6)

In the high-temperature limit all of the correlation functions 〈�Si · �Sj 〉 vanish for i > j and as
a result equation (5) correctly reduces to Curie’s law.

3. The quantum model

The Hamiltonian of equation (1) provides the classical counterpart to the quantum Heisenberg
model,

ĤN(JS, J
′
S, B) = ĤN(JS, J ′

S)− gµB �B ·
N∑
i=1

�̂Si (7)

of atomic ion spins S (expressed in units of h̄) with two different exchange interactions, JS
and J ′

S . (Here and later in the text the caret symbol will be used for quantum operators.) The
correspondence to the classical Heisenberg model is achieved by rescaling all quantum spin



1614 O Ciftja

operators by the factor
√
S(S + 1). It thus follows that J = S(S + 1)JS , J ′ = S(S + 1)J ′

S

and the quantity µ in equation (1) is given by µ = (gµB)
√
S(S + 1), where g is the Landé

g-factor for the given ion and µB is the Bohr magneton. In subsequent sections of this paper
we compare results for the equilibrium magnetization and the spin correlation function for
increasing values of S. The results rapidly approach the classical limit for increasing values
of the quantum spin S.

4. The irregular tetrahedron of classical spins

The irregular tetrahedron of classical spins consists of N = 4 spins where three spins are
placed in a ring and are coupled by a non-zero exchange interaction J �= 0 and the fourth spin
is coupled with a different exchange interaction J ′ to the remaining three spins. The whole
cluster of spins is then subjected to an external magnetic field �B and the Hamiltonian that
describes this system is written as

H(J, J ′, B) = J (�S1 · �S2 + �S2 · �S3 + �S3 · �S1) + J ′ �S4 ·
3∑
i=1

�Si − µ �B ·
4∑
i=1

�Si. (8)

We start by showing that with the introduction of the auxiliary spin vector, �S123 = �S1 + �S2 + �S3,
the calculation of the partition function Z(J, J ′, B) can readily be achieved. The success of
our method will hinge on the fact that the Hamiltonian may be rewritten in a simpler form as

H(J, J ′, B) = 1
2J (S

2
123 − 3) + J ′ �S4 · �S123 − µ �B · (�S123 + �S4). (9)

As it stands the integral in equation (2) for the irregular tetrahedron of classical spins is eight
dimensional, but we note that the value of this integral is left unchanged if we multiply the
integrand by the three-dimensional Dirac delta function

δ(3)(�S123 − �S1 − �S2 − �S3) =
∫

d3q

(2π)3
exp

[
i�q · (�S123 − �S1 − �S2 − �S3)

]
(10)

and then integrate over the �S123 variable. Although we are now faced with a 14-dimensional
integral the subsequent calculations are actually very straightforward. In particular, we exploit
the dependence of H(J, J ′, B) on �S123 and �S4, rather than the individual unit vectors �Si
(i = 1, 2, 3); the latter appear only in the argument of the exponential of equation (10). The
integrations over each of the three pairs of angles θi, ϕi (i = 1, 2, 3) are now performed
trivially. The remaining, ostensibly eight-dimensional integral depends only on �S123, �q and
angles θ4, ϕ4, although in actual fact it is immediately reducible to a one-dimensional integral
after performing firstly the integration over the �q variable, secondly the integration over the
angles θ4, ϕ4, and finally the integration over the angular part of the �S123 variable. As a final
result we obtain

Z(J, J ′, B) = (4π)4 exp( 3
2a)

∫ 3

0
dS123D(S123) exp(− 1

2aS
2
123)K(a

′, b, S123) (11)

where

K(a′, b, S123) = 1

2

∫ 1

−1
dx exp(bS123x)

sinh
(√
a′2S2

123 − 2a′bS123x + b2
)

√
a′2S2

123 − 2a′bS123x + b2
(12)
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where we introduce the dimensionless quantities a = βJ , a′ = βJ ′, b = µβB and D(S123)

denotes the integral

D(S123) = 4πS2
123

∫
d3q

(2π)3
exp(i�q · �S123)

(
sin q

q

)3

. (13)

Now one can readily evaluate the latter integral with the result

D(S123) =




1
2S

2
123 0 � S123 � 1

1
4S123(3 − S123) 1 � S123 � 3

0 S123 > 3.

(14)

Note that D(S123) is continuous at the merger points S123 = 1 and 3, but its derivative is
discontinuous at these points. As expected, contributions to the partition function can only
arise from values of S123 in the interval (0, 3); hence D(S123) must necessarily vanish for
S123 > 3, and the upper limit in equation (11) reflects this fact.

One can evaluate K(a′, b, S123) in closed form and the final result is

K(a′, b, S123) = exp( 1
2a

′(1 + S2
123))

4a′S123

exp(b2/2a′)
b

√
πa′

2

(
erf

[√
a′

2
(S123 − 1) +

b√
2a′

]

− erf

[√
a′

2
(S123 − 1)− b√

2a′

]
− erf

[√
a′

2
(S123 + 1) +

b√
2a′

]

+ erf

[√
a′

2
(S123 + 1)− b√

2a′

])
(15)

where erf(z) denotes the familiar error function (see, for example, chapter 7 of [14]), which
is defined for any value of the complex variable z. The properties of this function which
are useful in the present setting, including its connection with the confluent hypergeometric
function, and its asymptotic properties for large real and large imaginary argument, are listed
in the appendix.

In the zero-field limit (b → 0) one obtains the result

K(a′, b = 0, S123) = sinh(a′S123)

(a′S123)
(16)

noting that this function is even with respect to a′.

5. T = 0, general B

Before proceeding to extract physical results from equation (11), we consider the limiting case
of zero temperature, T = 0 K and arbitrary magnetic field B. For given B, the ground state
configuration of the spins depends very much on the sign and relative magnitude of J and
J ′. If one obtains the minimum energy, E0(J, J

′, B) for the irregular tetrahedron of classical
spins, then the zero-temperature equilibrium spin correlation functions for a general B are
given by 〈�S1 · �S2〉(T = 0) = 1

3
∂E0(J,J

′,B)
∂J

and 〈�S4 · �S1〉(T = 0) = 1
3
∂E0(J,J

′,B)
∂J ′ , while the total

magnetization due to the magnetic field is given by 〈Mz〉(T = 0) = − ∂E0(J,J
′,B)

∂B
.



1616 O Ciftja

5.1. J > 0, J ′ � 0

The most complex case arises when the irregular tetrahedron of classical spins is subjected to
a magnetic field and the spins are coupled through AF exchange interactions, J = |J | > 0
and J ′ = |J ′| � 0. Since both exchange interactions are AF, the ground state configuration
of the spins depends strongly on the relative strength between |J ′/J | and µB/|J |. Without
giving the details we found that the ground state spin correlation between the spins placed in
the ring that are coupled through J is given by

〈�S1 · �S2〉(T = 0)

=




1

6

[(∣∣∣∣J
′

J

∣∣∣∣ − µB

|J |
)2

− 3

]
0 �

∣∣∣∣J
′

J

∣∣∣∣ � 1
µB

|J | �
∣∣∣∣J

′

J

∣∣∣∣
1

6

[(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)2

− 3

]
0 �

∣∣∣∣J
′

J

∣∣∣∣ � 1 0 <

(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)

� 3

1 0 �
∣∣∣∣J

′

J

∣∣∣∣ � 1 3 <

(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)
<∞

1

6

[(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)2

− 3

]
1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

1 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 3 <

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

∣∣∣∣J
′

J

∣∣∣∣
1 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 3

∣∣∣∣J
′

J

∣∣∣∣ �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 5

∣∣∣∣J
′

J

∣∣∣∣
1 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 5

∣∣∣∣J
′

J

∣∣∣∣ �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)
<∞.

(17)

The ground state spin correlation between the fourth spin and each of the remaining three
spins on the ring is given by

〈�S4 · �S1〉(T = 0)

=




−1

3

[∣∣∣∣J
′

J

∣∣∣∣ − µB

|J |
]

0 �
∣∣∣∣J

′

J

∣∣∣∣ � 1
µB

|J | �
∣∣∣∣J

′

J

∣∣∣∣
1

3

[
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
]
, 0 �

∣∣∣∣J
′

J

∣∣∣∣ � 1 0 <

(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)

� 3

1 0 �
∣∣∣∣J

′

J

∣∣∣∣ � 1 3 <

(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)
<∞

−1

3

[
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
]

1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

−1 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 3 <

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

∣∣∣∣J
′

J

∣∣∣∣
1

6

[(
µB

|J |
)2/(∣∣∣∣J

′

J

∣∣∣∣
)2

− 10

]
1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 3

∣∣∣∣J
′

J

∣∣∣∣ �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 5

∣∣∣∣J
′

J

∣∣∣∣
1 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 5

∣∣∣∣J
′

J

∣∣∣∣ �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)
<∞.

(18)

The whole picture of the ground state configuration of the spins is completed by giving the
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total ground state magnetization induced by the magnetic field,

〈Mz〉(T = 0)

µ

=




1 +
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣ 0 �
∣∣∣∣J

′

J

∣∣∣∣ � 1
µB

|J | �
∣∣∣∣J

′

J

∣∣∣∣
1 +

µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣ 0 �
∣∣∣∣J

′

J

∣∣∣∣ � 1 0 <

(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)

� 3

4 0 �
∣∣∣∣J

′

J

∣∣∣∣ � 1 3 <

(
µB

|J | −
∣∣∣∣J

′

J

∣∣∣∣
)
<∞

µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣ − 1 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

2 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 3 <

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

∣∣∣∣J
′

J

∣∣∣∣(
µB

|J |
)/(∣∣∣∣J

′

J

∣∣∣∣
)

1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 3

∣∣∣∣J
′

J

∣∣∣∣ �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 5

∣∣∣∣J
′

J

∣∣∣∣
4 1 <

∣∣∣∣J
′

J

∣∣∣∣ <∞ 5

∣∣∣∣J
′

J

∣∣∣∣ �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)
<∞.

(19)

5.2. J > 0, J ′ � 0

When the exchange interactions between the spins of the irregular tetrahedron subjected to the
magnetic field are such that J = |J | > 0 and J ′ = −|J ′| � 0, the ground state spin correlation
functions between the spins of the ring coupled through J is given by

〈�S1 · �S2〉(T = 0) =




1

6

[(∣∣∣∣J
′

J

∣∣∣∣ +
µB

|J |
)2

− 3

]
0 �

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

1 3 <

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)
<∞.

(20)

The ground state spin correlation between the fourth spin and each of the remaining spins
on the ring is given by

〈�S4 · �S1〉(T = 0) =




1

3

[∣∣∣∣J
′

J

∣∣∣∣ +
µB

|J |
]

0 �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

1 3 <

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)
<∞.

(21)

The total ground state magnetization induced by the magnetic field is given by

〈Mz〉(T = 0)

µ
=




1 +
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣ 0 �
(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)

� 3

4 3 <

(
µB

|J | +

∣∣∣∣J
′

J

∣∣∣∣
)
<∞.

(22)

5.3. J < 0, J ′ � 0

When the exchange interactions between the spins of the irregular tetrahedron subjected to the
magnetic field are such that J = −|J | < 0 and J ′ = |J ′| � 0, the ground state spin correlation
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function between the spins of the ring that interact with exchange J with each other is given
by

〈�S1 · �S2〉(T = 0) =




1 0 � µB

|J | � 2

∣∣∣∣J
′

J

∣∣∣∣
1 2

∣∣∣∣J
′

J

∣∣∣∣ < µB|J | � 4

∣∣∣∣J
′

J

∣∣∣∣
1 4

∣∣∣∣J
′

J

∣∣∣∣ < µB|J | <∞.

(23)

The ground state spin correlation between the fourth spin and each of the remaining three
spins on the ring is given by

〈�S4 · �S1〉(T = 0) =




−1 0 � µB

|J | � 2

∣∣∣∣J
′

J

∣∣∣∣
1

6

[(
µB

|J |
)2/(∣∣∣∣J

′

J

∣∣∣∣
)2

− 10

]
2

∣∣∣∣J
′

J

∣∣∣∣ < µB|J | � 4

∣∣∣∣J
′

J

∣∣∣∣
1 4

∣∣∣∣J
′

J

∣∣∣∣ < µB|J | <∞.

(24)

The total ground state magnetization induced by the magnetic field is given by

〈Mz〉(T = 0)

µ
=




2 0 � µB

|J | � 2

∣∣∣∣J
′

J

∣∣∣∣(
µB

|J |
)/(∣∣∣∣J

′

J

∣∣∣∣
)

2

∣∣∣∣J
′

J

∣∣∣∣ < µB|J | � 4

∣∣∣∣J
′

J

∣∣∣∣
4 4

∣∣∣∣J
′

J

∣∣∣∣ < µB|J | <∞.

(25)

5.4. J < 0, J ′ � 0

The simplest case is that when the irregular tetrahedron of classical spins is subjected to a
magnetic field and the spins interact with F exchange, J = −|J | < 0 and J ′ = −|J ′| � 0.
Since the two exchange interactions are F, the ground state configuration of the spins is one
where all spins are collinear to the magnetic field for any value of the magnetic field. So for
any 0 �

∣∣ J ′
J

∣∣ <∞ and 0 � µB

|J | <∞ the ground state spin correlation functions are

〈�S1 · �S2〉(T = 0) = 1 (26)

〈�S4 · �S1〉(T = 0) = 1 (27)

and the total ground state magnetization is

〈Mz〉(T = 0)

µ
= 4. (28)

6. General T , general B

Due to the symmetry of the system, the spin correlation function between any pair of spins
coupled through J will be given from 〈�S1 · �S2〉(B) = 〈�S2 · �S3〉(B) = 〈�S3 · �S1〉(B) =
− 1

3β
∂
∂J

lnZ(J, J ′, B), and for the same reason the spin correlation function between the
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fourth spin and any of the other three spins is obtained from 〈�S4 · �S1〉(B) = 〈�S4 · �S2〉(B) =
〈�S4 · �S3〉(B) = − 1

3β
∂
∂J ′ lnZ(J, J ′, B). The total magnetization due to the magnetic field may

be found from the standard formula 〈Mz〉(B)
µ

= 1
µβ

∂
∂B

lnZ(J, J ′, B). Following these steps one
finds that

〈�S1 · �S2〉(B) = −1

2
+

1

6

∫ 3
0 dS123D(S123)S

2
123 exp(− 1

2aS
2
123)K(a

′, b, S123)∫ 3
0 dS123D(S123) exp(− 1

2aS
2
123)K(a

′, b, S123)
. (29)

One can certainly evaluates the integrals appearing in equation (29) and in other similar
expressions in closed form, although for all practical purposes the above one-dimensional
integral form is much more transparent.

The calculation of the other spin correlation function and the total magnetization is much
more complicated, but as a first convenient step it may suffice to write

〈�S4 · �S1〉(B) = −1

3

∫ 3
0 dS123D(S123) exp(− 1

2aS
2
123)

∂
∂a′K(a

′, b, S123)∫ 3
0 dS123D(S123) exp(− 1

2aS
2
123)K(a

′, b, S123)
(30)

and

〈Mz〉(B)
µ

=
∫ 3

0 dS123D(S123) exp(− 1
2aS

2
123)

∂
∂b
K(a′, b, S123)∫ 3

0 dS123D(S123) exp(− 1
2aS

2
123)K(a

′, b, S123)
. (31)

The analytic calculation of ∂
∂a′K(a

′, b, S123) and ∂
∂b
K(a′, b, S123) is very lengthy, so it is

preferable to use standard numerical integration methods instead of performing such a tedious
analytic integration, although we were also able to obtain the analytic expressions for these
terms.

Figure 1. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S4 · �S1〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 0.5 and several values of the magnetic field.
The curves shown are for µB/|J | = 0.0 (lowest curve), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0
(highest curve).
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Figure 2. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S1 · �S2〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 0.5 and several values of the magnetic field.
The curves shown are for µB/|J | = 0.0 (full circle), 0.5 (open circle), 1.0 (full square), 1.5
(lowest full curve), 2.0, 2.5, 3.0, 3.5 and 4.0 (highest full curve).

Figure 3. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S4 · �S1〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 1.5 and different values of the magnetic field.
The curves shown are for µB/|J | = 0.0 (full), 0.5 (dotted), 1.0 (broken) and 1.5 (chain).

In the following we focus our attention on the most interesting and complex case of
the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0 and
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Figure 4. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S4 · �S1〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 1.5 and different values of the magnetic field.
The curves shown are for µB/|J | = 1.5 (full), 2.0 (dotted), 2.5 (broken) and 3.0 (chain).

Figure 5. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S4 · �S1〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 1.5 and different values of the magnetic field.
The curves shown are for µB/|J | = 3.0 (lowest curve), 4.0, 5.0, 6.0, 7.0 and 8.0 (highest curve).

J ′ = |J ′| � 0 subjected to an external magnetic field �B, without giving any specific results
for the cases where at least one exchange is F.
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Figure 6. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S1 · �S2〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 1.5 and several values of the magnetic field.
The curves shown are for µB/|J | = 0.0 (lowest curve), 0.5, 1.0, 1.5, 2.0, 4.0, 6.0 and 8.0 (highest
curve).

Figure 7. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S4 · �S1〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 3.0 and several values of the magnetic field.
The curves shown are for µB/|J | = 0.0 (full circle), 3.0 (open circle), 6.0 (full square), 9.0
(opaque square) and 12.0 (full triangle).
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Figure 8. For the irregular tetrahedron of classical spins with AF exchange interaction, J = |J | > 0
and J ′ = |J ′| � 0 we plot the spin correlation function 〈�S1 · �S2〉(B) as a function of the
dimensionless parameter kBT /|J | for |J ′|/|J | = 3.0 and several values of the magnetic field.
The curves shown are for µB/|J | = 0.0 (lowest curve), 3.0, 6.0, 9.0 and 12.0 (highest curve).

Figure 9. Field-induced total magnetic moment in units of µ = gµB
√
S(S + 1) as a function

of µB/J for the irregular tetrahedron of quantum spin-S particles with AF exchange interaction
(JS = |JS | > 0, J ′

S = |J ′
S | � 0) and |J ′

S |/|JS | = |J ′|/|J | = 0.5, where J = S(S + 1)JS and
J ′ = S(S + 1)J ′

S . For a very low reduced temperature, kBT /|J | = 0.2, the curves shown are for
S = 1

2 (lowest curve), 1, 3
2 , 2,

5
2 ,

9
2 and for the classical model (broken curve).
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In figure 1 we display our results for 〈�S4 · �S1〉(B) as a function of the dimensionless
parameter kBT /|J | for several values ofµB/|J | and for |J ′|/|J | = 0.5. In figure 2 we display
our results for 〈�S1 · �S2〉(B) as a function of the dimensionless parameter kBT /|J | for several
values of µB/|J | and for |J ′|/|J | = 0.5. In both cases the results derived in the previous
section for T = 0 K are also included.

The case when |J ′|/|J | = 1.5 is more complicated than the previous case. In figure 3
we show our results for 〈�S4 · �S1〉(B) as a function of the dimensionless parameter kBT /|J |
for µB/|J | = 0.0, 0.5, 1.0 and 1.5, and for |J ′|/|J | = 1.5. As shown in figure 4 for values
of the magnetic field in the range 1.5 � µB/|J | � 3 the fourth spin is always antiparallel
to the other three spins at T = 0 K. For increasing values of the magnetic field, as shown in
figure 5, the spin correlation 〈�S4 · �S1〉(B) gradually increases, until it becomes 1.0 at T = 0 K
for µB/|J | � 6. In figure 6 we display our results for 〈�S1 · �S2〉(B) as a function of the
dimensionless parameter kBT /|J | for several values of µB/|J | and for |J ′|/|J | = 1.5.

In figure 7 we give our results for 〈�S4 · �S1〉(B) as a function of the dimensionless parameter
kBT /|J | for several values ofµB/|J | and for |J ′|/|J | = 3.0 and in figure 8 we give our results
for 〈�S1 · �S2〉(B) as a function of the dimensionless parameter kBT /|J | for several values of
µB/|J | and for |J ′|/|J | = 3.0.

For relatively small values of the quantum spin S, exact numerical results can be obtained
using standard diagonalization methods. In figure 9 we show the total magnetic moment in
units of µ = gµB

√
S(S + 1) versus µB/|J |, for the irregular tetrahedron of quantum spins

with AF exchange interaction, JS = |JS | > 0, J ′
S = |J ′

S | � 0, where J = S(S + 1)JS ,
J ′ = S(S + 1)J ′

S and |J ′
S |/|JS | = |J ′|/|J | = 0.5. We consider a very low dimensionless

temperature, kBT /|J | = 0.2. The full curves shown are for the quantum spin S = 1
2 (lowest

curve), 1, 3
2 , 2,

5
2 and 9

2 . The broken curve is the corresponding result for the model of classical
spins. For increasing values of S the curves rapidly converge to the classical curve, although
one notes that for lower values of temperature we need higher values of S in order to achieve
a good convergence to the classical result.

7. General T , B = 0

In the limit of zero magnetic field (b → 0) we find that

lim
b→0

∂

∂a′K(a
′, b, S123) = 1

a′

[
cosh(a′S123)− sinh(a′S123)

a′S123

]
(32)

and

lim
b→0

∂

∂b
K(a′, b, S123) = S123

sinh(a′S123)

2a′S123
− 1

2a′S123

[
cosh(a′S123)− sinh(a′S123)

a′S123

]
. (33)

As a consequence of these results, the zero-field spin correlation functions for the irregular
tetrahedron clusters are given by

〈�S1 · �S2〉(B = 0) = −1

2
+

1

6

∫ 3
0 dS123 S

2
123D(S123) exp(− 1

2aS
2
123)sinh(a′S123)/(a

′S123)∫ 3
0 dS123D(S123) exp(− 1

2aS
2
123)sinh(a′S123)/(a′S123)

(34)

and

〈�S4 · �S1〉(B = 0) = 1

3a′ − 1

3a′

∫ 3
0 dS123D(S123) exp(− 1

2aS
2
123) cosh(a′S123)∫ 3

0 dS123D(S123) exp(− 1
2aS

2
123)sinh(a′S123)/(a′S123)

. (35)
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For J ′ = 0 one notes that 〈�S1 · �S2〉(B = 0) recovers the corresponding result for the ring of
three spins in the absence of the magnetic field, while 〈�S4 · �S1〉(B = 0) ≡ 0 for any value of
parameter a.

The case when J ′ = J (a′ = a) is interesting too because it corresponds to the regular
tetrahedron cluster of four spins coupled with the same exchange interaction J as in the Cr4
structure [8]. We verified that in this case the spin correlation functions between any pair of
spins are the same, 〈�S1 · �S2〉(B = 0) = 〈�S4 · �S1〉(B = 0), and are given by

〈�S1 · �S2〉(B = 0) = −1

3
+

1

4a
+

1

12a

× 4 exp(−2a)− exp(−8a)− 3
√

8πa
[
2 erf(

√
2a)− erf(

√
8a)

]
+ 4 exp(−2a)− exp(−8a)− 3

. (36)

From the expression for the zero-field spin correlation function, one can easily compute the
reduced zero-field susceptibility per spin for the irregular classical tetrahedron system which
is given by χ̃N (T ) = 1 + 3

2 [〈�S1 · �S2〉(B = 0) + 〈�S4 · �S1〉(B = 0)].

8. Summary

In this paper we have studied in detail the properties of a classical Heisenberg magnetic system
consisting of an irregular tetrahedron array of spins that interact with each other through two
different exchange interactions and are subjected to a uniform external magnetic field. By
using a method which introduces auxiliary spin variables into the defining expression for the
partition function, we obtained the exact analytical formulae for the magnetic moment induced
by the external magnetic field for arbitrary temperature (i.e. the complete magnetic equation
of state), as well as the field and temperature dependence of the spin correlation functions.
The results also apply to systems of spins with the regular triangle and regular tetrahedron
geometries. We succeeded in expressing the partition function, the total magnetic moment, and
the spin correlation function as one-dimensional integrals, a representation which is particularly
convenient for the purpose of extracting highly accurate numerical values, figures, etc.

In the special case of the irregular tetrahedron with both exchange interactions being AF
and when |J ′|/|J | = 0.5, we gave detailed comparisons between our results for the classical
spins and the corresponding quantum system of individual spins S = 1

2 , 1,
3
2 , . . . . The reader

can correctly anticipate that as the individual spin quantum number S increases, the rapid
changes at low temperatures of the magnetic moment versus the applied magnetic field rapidly
wash out. For increasing S the eigenvalue spectrum proliferates, becoming continuous in the
large-S limit, and the magnetic moment is a slowly varying function of the applied field.

Despite the smallness of the system we have considered, this study is timely for there is
considerable experimental activity at present devoted to the synthesis and physical analysis of
large organic molecules in which are embedded a very small number of paramagnetic ions,
with the geometries of an irregular tetrahedron, regular tetrahedron and regular triangle.

A very common choice [9] of paramagnetic ion is Fe3+ which has spin S = 5
2 and for

which the present results are directly applicable, except for sufficiently low temperatures. The
complex known as Fe4 is well described [9] by such a model. As we illustrated in this work,
when all exchange interactions between spins are AF, it turns out that the magnetic frustration
of this system is a very intricate function of temperature, magnetic field and the ratio of the
two exchange interactions.

What are the prospects for succeeding in generalizing this paper to larger arrays of
interacting Heisenberg spins, including more complicated geometries? For specialized
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geometries and interactions, generalizations of the present methods are indeed possible. One
example is that of an array of five spins positioned at the vertices of a regular hexagon. A
second example is that of an array of six spins positioned at the vertices of a regular octahedron.

A third example is that of an arbitrary number, N , of spins which interact with all others
via a common isotropic exchange constant. This is the isotropic classical Heisenberg analogue
of the well known Kittel–Shore model [15] which involves interacting Ising spins.

Whereas in the past these and other small systems might have been considered as
appropriate ‘recreational’ projects for mathematical physicists, because of the dramatic recent
advances in synthesis chemistry these models are currently of considerable experimental
importance.

Appendix

For convenience we list here several formulae for the error function erf(z), which are useful
to this paper. For any complex variable z this function is defined by

erf(z) = 2√
π

∫ z

0
dt e−t2 . (A1)

Note that erf(−z) = − erf(z) and its Taylor expansion,

erf(z) = 2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)
(A2)

converges for all finite z. The relation

erf(z) = 2z√
π
M( 1

2 ,
3
2 ,−z2) = 2z√

π
exp(−z2)M(1, 3

2 , z
2) (A3)

proves to be very helpful, where

M(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!
(A4)

denotes the confluent hypergeometric function, (a)0 = 1, and (a)n = a(a + 1)(a + 2) · · · (a +
n−1) for n � 1. With the aid of equation (A3) one can establish the following two asymptotic
formulae that are of importance in the main text for investigating the low-temperature properties
of the spin systems. If x denotes a real positive variable, we have for the x � 1 regime

erf(x) ∼ 1 − 1√
π

exp(−x2)

x

[
1 − 1

2x2
+ O

(
1

x4

)]
(A5)

and

erf(ix) ∼ i√
π

exp(x2)

x

[
1 +

1

2x2
+ O

(
1

x4

)]
(A6)

where i = √−1.
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